1-Touch Laser Photo is an exclusive Universal Laser Systems software application that allows you to quickly and easily make almost any photograph laser engraveable. 1-Touch Laser Photo applies special filters to your image and adjusts the contrast and definition appropriately for the material being processed. Using the software is as simple as selecting your target material from a list and cropping, resizing, rotating or mirroring the image as needed.
Print Preview Mode (Want to see what your photo looks like on wood? Marble? Glass? Use 1-Touch Laser's Print Preview feature to find out without even turning on your laser. Choose from dozens of included simulation backgrounds or use your own!)
1Touch Laser Photo Activation Code
Download: https://tinurli.com/2vF9uO
Universal Laser Systems has launched special photo editing software. In five steps you can get from a photo to a perfect laser file. The software processes the photo in such a smart way that searching for the right settings is no longer necessary. The software has a number of built-in filters that controls this for the user.
Negating the need for third party photo editing software 1-Touch has been developed to make any photographic image suitable for laser engraving. Simply select your target material from a list and 1-Touch Laser Photo will determine the appropriate contrast, filter and grayscale levels and calculate the ideal laser speed and power settings. Then engrave the image onto your material at the touch of a button.
Apparatuses and methods for applying laser energy for therapeutic purposes (e.g., relief of pain and/or inflammation in tissues) are disclosed. The synchronization of two spatially overlapping energy forms having closely positioned emission axes and particular emission modalities can in many cases provide strengthened or even synergistic effects in the alleviation or treatment of multiple of acute and/or chronic conditions (e.g., pain and inflammation) afflicting a given tissue. The laser energy forms are characterized in terms of their power levels, activation times, activation periods, pulse durations, pulse periods, wavelengths, and other identified characteristics.
We developed this software to make any photographic image suitable for laser engraving. Simply select your target material from a list and 1-Touch Laser Photo will determine the appropriate contrast, filter and grayscale levels and calculate the ideal laser speed and power settings. Then engrave the image onto your material at the touch of a button.
The estimation of space and time can interfere with each other, and neuroimaging studies have shown overlapping activation in the parietal and prefrontal cortical areas. We used duration and distance discrimination tasks to determine whether space and time share resources in prefrontal cortex (PF) neurons. Monkeys were required to report which of two stimuli, a red circle or blue square, presented sequentially, were longer and farther, respectively, in the duration and distance tasks. In a previous study, we showed that relative duration and distance are coded by different populations of neurons and that the only common representation is related to goal coding. Here, we examined the coding of absolute duration and distance. Our results support a model of independent coding of absolute duration and distance metrics by demonstrating that not only relative magnitude but also absolute magnitude are independently coded in the PF. NEW & NOTEWORTHY Human behavioral studies have shown that spatial and duration judgments can interfere with each other. We investigated the neural representation of such magnitudes in the prefrontal cortex. We found that the two magnitudes are independently coded by prefrontal neurons. We suggest that the interference among magnitude judgments might depend on the goal rather than the perceptual resource sharing. PMID:27760814
For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. Here, a number of characteristicsmore in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed. less
For the LCLS-II X-ray instruments, laser power meters are being developed as compact X-ray power diagnostics to operate at soft and tender X-ray photon energies. These diagnostics can be installed at various locations along an X-ray free-electron laser (FEL) beamline in order to monitor the transmission of X-ray optics along the beam path. In addition, the power meters will be used to determine the absolute X-ray power at the endstations. Here, thermopile power meters, which measure average power, and have been chosen primarily for their compatibility with the high repetition rates at LCLS-II, are evaluated. A number of characteristics in the soft X-ray range are presented including linearity, calibrations conducted with a photodiode and a gas monitor detector as well as ultra-high-vacuum compatibility tests using residual gas analysis. The application of these power meters for LCLS-II and other X-ray FEL sources is discussed.
VCSEL based sensors can measure distance and velocity in three dimensional space and are already produced in high quantities for professional and consumer applications. Several physical principles are used: VCSELs are applied as infrared illumination for surveillance cameras. High power arrays combined with imaging optics provide a uniform illumination of scenes up to a distance of several hundred meters. Time-of-flight methods use a pulsed VCSEL as light source, either with strong single pulses at low duty cycle or with pulse trains. Because of the sensitivity to background light and the strong decrease of the signal with distance several Watts of laser power are needed at a distance of up to 100m. VCSEL arrays enable power scaling and can provide very short pulses at higher power density. Applications range from extended functions in a smartphone over industrial sensors up to automotive LIDAR for driver assistance and autonomous driving. Self-mixing interference works with coherent laser photons scattered back into the cavity. It is therefore insensitive to environmental light. The method is used to measure target velocity and distance with very high accuracy at distances up to one meter. Single-mode VCSELs with integrated photodiode and grating stabilized polarization enable very compact and cost effective products. Besides the well know application as computer input device new applications with even higher accuracy or for speed over ground measurement in automobiles and up to 250km/h are investigated. All measurement methods exploit the known VCSEL properties like robustness, stability over temperature and the potential for packages with integrated optics and electronics. This makes VCSEL sensors ideally suited for new mass applications in consumer and automotive markets. 2ff7e9595c
Comments